c^2+1=63

Simple and best practice solution for c^2+1=63 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for c^2+1=63 equation:



c^2+1=63
We move all terms to the left:
c^2+1-(63)=0
We add all the numbers together, and all the variables
c^2-62=0
a = 1; b = 0; c = -62;
Δ = b2-4ac
Δ = 02-4·1·(-62)
Δ = 248
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{248}=\sqrt{4*62}=\sqrt{4}*\sqrt{62}=2\sqrt{62}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{62}}{2*1}=\frac{0-2\sqrt{62}}{2} =-\frac{2\sqrt{62}}{2} =-\sqrt{62} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{62}}{2*1}=\frac{0+2\sqrt{62}}{2} =\frac{2\sqrt{62}}{2} =\sqrt{62} $

See similar equations:

| s-1=-8 | | 8n-4=-5 | | 2(3x-3)+4=(2x+1) | | 8n-4=5 | | 4+5(x-1)=9-2(×-3) | | 4+5(x-1)=9-2 | | 1/3p=1/18 | | 16-3/5x=10 | | 3x=700 | | 3x-3+2x+14=90 | | M=(5+2m)(3) | | 4x-3+3x+10=90 | | 5x+16=8x-2 | | 189=89-u | | -11/x=-22/x+4 | | -12x-29=-x+3+5x | | 16x-3=2x-2 | | 16x^-3=2x^-2 | | x+10/2-13/x+1=11/3 | | 2(9x-38)=47-7x | | x/2+9/2=15 | | 1.5u+8=3.5 | | 2.5x+.5=100 | | 2x/5-3x/4=-3 | | (x - 10)2/5 = (9x)1/5 | | 2x+2(x+3)=2(1/2x)+2(x+6) | | 2y/3=5y-2 | | 5(x+2)=2(3x+1) | | x-8=12/x | | y-10=800 | | 3(x+1)=3(2x+4) | | 2(x+5)=5x+4 |

Equations solver categories